
Hierarchical Decision-Making in Population Games
Yu-Wen Chen, Nuno C. Martins, Murat Arcak

Abstract—This paper introduces a hierarchical framework for
population games, where individuals delegate decision-making
to proxies that act within their own strategic interests. This
framework extends classical population games, where individuals
are assumed to make decisions directly, to capture various real-
world scenarios involving multiple decision layers. We establish
equilibrium properties and provide convergence results for the
proposed hierarchical structure. Additionally, based on these
results, we develop a systematic approach to analyze population
games with general convex constraints, without requiring indi-
viduals to have full knowledge of the constraints as in existing
methods. We present a navigation application with capacity
constraints as a case study.

I. INTRODUCTION

Population games study the aggregate behavior of strategic
agents in large populations who adapt their actions via learning
to maximize payoffs. A fundamental research question is
determining conditions under which learning rules and payoff
mechanisms ensure convergence to Nash equilibria. Early
studies focused on memoryless payoff mechanisms, such as
potential games [1]. Later, building on [2], the paper [3]
introduced the concept of δ-passivity to characterize stability
properties and to allow for dynamic payoff mechanisms. A
broader δ-dissipativity approach was presented in [4]. Other
passivity approaches were applied to imitation dynamics in [5].
Further advancing this line of work, [6] brought the notion of
counterclockwise passivity (CCW) [7] to population games.

While the studies discussed above assume that individuals
directly select their strategies, in many applications, decision-
making is mediated by proxies with more information or
computational power. For example, investors delegate portfo-
lio management to financial managers, and travelers follow
navigation applications in selecting routes. This leads to hier-
archical, rather than direct, decision-making as illustrated in
Figures 1a and 1b. Moreover, proxies may have strategy pref-
erences that constrain the social state to a subset of the simplex
in which it evolves. Limited work has addressed population
games with such constraints. In [8], the authors considered
box constraints which do not account for coupling restrictions
between strategies. Moreover, the work requires a demanding
information structure where the individuals have access to all
system-wide constraints. In [9], a payoff penalty was used to
ensure convergence to the feasible set, but the constraints were
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not satisfied at all times. Recently, [10] studied constrained
best-response dynamics for convex constraints; however, as in
[8], these constraints are assumed to be common knowledge.

The main contributions of this paper are twofold. First,
we introduce a hierarchical framework for population games,
which captures practical scenarios involving multiple decision
layers. With properly designed proxies and payoff structure,
we provide convergence results akin to those in classical popu-
lation games. Second, we address population games with gen-
eral convex constraints within this framework. Unlike existing
methods [8]–[10] requiring constraints known to individuals,
we incorporate constraints through the hierarchical structure.

Section II gives an overview of population games. Sec-
tion III introduces the hierarchical framework and formulates
the main problem. Section IV presents the theoretical results.
Section V illustrates the results on a navigation example.

II. PRELIMINARIES

For a classical (single) population game, each individual
in the population can choose from a set of strategies S =
{1, . . . , d}. Let ∆d =

{
v ∈ Rd

+ : 1Tv = 1
}

be the probability
simplex in Rd. Denote the state s(t) = [s1(t), . . . , sd(t)]

T ∈
∆d, where si(t) describes the proportion of the population
selecting strategy i at time t. A payoff function F : ∆d → Rd

maps a state s(t) to a payoff vector F (s(t)) with Fi(s(t))
representing the payoff for choosing strategy i.

Definition 1 (Best response to π within C). The best response
to a payoff vector π ∈ Rd within a compact set C ⊆ ∆d is
denoted as BRC(π) = argmaxs∈C sTπ.

Definition 2 (Nash equilibrium of F within C). Let C ⊆ ∆d be
compact. s∗ ∈ C is a Nash equilibrium for the payoff function
F within C if (s − s∗)TF (s∗) ≤ 0, for s ∈ C. The set of all
Nash equilibria for F within C is denoted as NEC(F ).

Given payoff vectors π(t) ∈ Rd for all t, the individuals
switch between strategies to receive higher payoffs, which
leads to a dynamics in s(t). An evolutionary dynamics model
(EDM) is used to describe this learning dynamics:

ṡ(t) = V(s(t),π(t)), t ≥ 0, (1)

where V : ∆d × Rd → Rd is defined based on the switching
behaviors. Some common EDMs include Smith [11], Brown-
von Neumann-Nash (BNN) [12], and best response dynamics
[13, Chapter 6]. While the best response dynamics is defined
over the simplex ∆d, a generalization to it is defined over a
compact convex subset of ∆d as follows.

Definition 3 (Constrained best response dynamics [10]).

ṡ(t) ∈ BRC (π(t))− s(t), C ⊆ ∆d compact convex. (2)



Definition 4 (Positive Correlation). An EDM (1) is positively
correlated if V(s,π) ̸= 0 =⇒ πTV(s,π) > 0.

Definition 5 (Nash Stationarity w.r.t. C). An EDM (1) is Nash
stationary w.r.t. C if V(s,π) = 0 ⇐⇒ s ∈ BRC(π).

While BNN, Smith, and best response dynamics are Nash
stationary w.r.t. ∆d, (2) is Nash stationary w.r.t. C.1

III. PROBLEM FORMULATION

We first present the core formulation and introduce key
notation using a two-layer example in Section III-A. We extend
this to the general hierarchical framework in Section III-B, and
formulate several problems in this framework in Section III-C.

A. Illustrative example

Consider a group of investors who allocate capital across
three investment targets through two managers. This leads to
two layers as in Figure 1b: the first contains the investors;
the second comprises two managers. We assume each investor
has one unit of capital and must allocate it to either man-
ager. Manager 1 distributes the funds across three investment
targets, while Manager 2 invests only in the first and second.

Each decision group has a state variable representing its
strategy distribution over its strategy set. Specifically, for each
decision group j in layer i, denoted as the (i, j)-group, we
define a state variable si,j(t) ∈ ∆di,j

, where di,j is the number
of available strategies to the (i, j)-group. The k-th entry of
si,j(t), denoted as si,jk (t), represents the proportion of the
(i, j)-group selecting the k-th strategy at time t.

We define the social state x(t) ∈ ∆3 as the final distribution
over the three final strategies (investment targets) at time t:

x(t) =

x1(t)
x2(t)
x3(t)

 =

s1,11 (t)s2,11 (t) + s1,12 (t)s2,21 (t)

s1,11 (t)s2,12 (t) + s1,12 (t)s2,22 (t)

s1,11 (t)s2,13 (t)

 (3a)

=

1 0 0 1 0
0 1 0 0 1
0 0 1 0 0


︸ ︷︷ ︸

:=W 2∈R3×5

[
s2,1(t) 03×1

02×1 s2,2(t)

]
︸ ︷︷ ︸

:=T 2(t)∈R5×2

s1,1(t). (3b)

Equation (3a) follows from the paths in Figure 1b, while (3b)
provides a compact representation. Here, T 2(t) models the
redistribution of funds by the managers in layer 2 at time t,
and W 2 aggregates the resulting allocations. Further details
on T 2(t) and W 2 are provided in Section III-B.

With the defined state variables si,j(t) and social state x(t),
we now describe the system dynamics. A payoff function
F : ∆3 → R3 maps the social state x(t) to a payoff vector
F (x(t)) = [F1(x(t)), F2(x(t)), F3(x(t))]

T , where Fi(x(t))
represents the payoff for investing in the i-th investment target.
Manager 1 updates portfolio allocations based on F (x(t)),
while Manager 2 updates based on F1(x(t)) and F2(x(t)).
In addition, investors update their choices based on manager

1Since the best response dynamics and (2) are differential inclusions, a
modified version of the Nash stationarity is used, as in [13, Theorem 6.1.4].

(a) Direct framework (b) Two-layer hierarchy

(c) Two-layer population game formulation for (b)

Fig. 1: In contrast to direct framework (a) in most literature,
we provide an illustrative example with two-layer hierarchy.

performance. A natural performance metric for managers is
their average payoff. Therefore, we can model the updates by:

ṡi,j(t) = Vi,j
(
si,j(t),πi,j(t)

)
, t ≥ 0, (4)

for (i, j) ∈ {(1, 1), (2, 1), (2, 2)}. Here, Vi,j is the EDM
defined in Section II and πi,j(t) is the payoff at time t, for
the (i, j)-group, while the payoffs are given as:

π2,1(t) = F (x(t)) (5a)

π2,2(t) = [F1(x(t)), F2(x(t))]
T (5b)

π1,1(t) =

[
3∑

l=1

s2,1l (t)Fl(x(t)),
2∑

l=1

s2,2l (t)Fl(x(t))

]T
. (5c)

The overall structure is visualized in Figures 1b and 1c.

B. Hierarchical framework

Generalizing the notation T i(t) and W i introduced in
(3b), we define a transformation matrix T i(t) by diagonally
concatenating all state variables si,j(t) ∈ ∆di,j

in layer i.
Suppose there are ni decision groups (state variables) in
layer i, then for all t ≥ 0,

T i(t) = blkdiag
(
si,1(t), . . . , si,n

i

(t)
)
∈ Roi×ni

, (6)

where blkdiag denotes the block diagonal matrix composed by
the arguments and oi =

∑
j d

i,j is the total number of outputs
of layer i. Since outputs from one layer may be grouped into
decision groups in the next layer, we introduce an aggregation
matrix to formalize this transition. These aggregation matrices
define how outputs from layer i are assigned to decision groups
in layer i + 1, fully characterizing the hierarchical structure.
An aggregation matrix is defined as:

W i =
[
wi

1, . . . ,w
i
oi

]
∈ Rni+1×oi , (7)

where wi
k ∈ Rni+1

represents how the k-th output of layer i
distributes to the next layer. Let nL+1 = d represent the



number of final strategies. The transformation matrix T i(t)
and aggregation matrix W i satisfy the following properties:

Property 1. T i(t) and W i are elementwise nonnegative.

Property 2. 1TT i(t) = 1T and 1TW i = 1T .

We now formulate the general L-layer hierarchical frame-
work using the notation introduced in (6) and (7). Suppose
layer 1 consists of a single decision group representing the
entire population, while each subsequent layer i has ni ≥ 1
decision groups for i = 2, . . . , L. The decision group j in
layer i is associated with a state variable si,j(t) ∈ ∆di,j

, which
describes the group’s distribution over the group’s strategy set.

Let the hierarchy be characterized by W 1 to WL. Note that
since layer 1 has only one decision group, T 1(t) = s1,1(t) and
W 1 is the identity matrix. Then, we can derive the distribution
of the entire population input to layer i at time t by

M i(t) = W i−1T i−1(t) . . .W 1s1,1(t) ∈ ∆ni

. (8)

Further, WLTL(t)ML(t) captures the distribution of the
entire population over the d final strategies, which we call
the social state. We denote the social state as x(t) ∈ ∆d:

x(t) = WLTL(t)ML(t) = ΠL
i=1W

iT i(t)

= WLTL(t) . . .W 2T 2(t)W 1s1,1(t), t ≥ 0. (9)

Using Property 1 and Property 2, we can verify that x(t) ∈
∆d, confirming that the population is properly distributed over
the final d strategies. However, unlike in Figure 1a, where the
individual selects a final strategy directly, here, decisions are
made indirectly through multiple layers. Therefore, we refer
to each layer i, for i = 2, . . . , L, as a proxy layer.

To complete the formulation, we describe the dynamics for
si,j(t). Let p(t) ∈ Rd represent the d payoffs for selecting
each final strategy. We temporarily assume p(t) is given by a
payoff function F : ∆d → Rd, mapping the social state x(t)
to the payoff vector F (x(t)) for all t:

p(t) = F (x(t)), t ≥ 0. (10)

Later, we will extend this to a dynamic model in Section IV-B.
Denote πi,j(t) ∈ Rdi,j

as the di,j payoffs for selecting
each strategy in (i, j)-group. Recall from Section III-A that
πi,j(t) is determined by the average payoff of the group it
joins via back-propagating p(t), as in (5). Let πi(t) be the
concatenation of payoffs πi,j(t) in layer i:

πi(t) =

 πi,1(t)
...

πi,ni

(t)

 ∈ Roi , t ≥ 0. (11)

Then, the payoffs are determined by

πL(t) = WLT
p(t) (12a)

πi(t) = W iTT i+1(t)
T
πi+1(t), i = L− 1, . . . , 1. (12b)

With (12), si,j(t) evolves and follows, as in (4), the EDM:

ṡi,j(t) = Vi,j
(
si,j(t),πi,j(t)

)
, t ≥ 0. (13)

The hierarchical framework is illustrated in Figure 2.

Fig. 2: Illustration of the hierarchical framework. The popula-
tion contributes to the social state via multiple proxy layers.

C. Problem description

In this paper, we consider the general case where the
strategy distribution of interest for each (i, j)-decision group
is not necessarily the entire simplex but a subset Ki,j ⊆ ∆di,j

.
This states that the (i, j)-group always makes a decision within
Ki,j , i.e., si,j(t) ∈ Ki,j . These subsets collectively determine
an admissible set K ⊆ ∆d, where the social state x(t) can
reside. Denote [m] as the set {1, . . . ,m}.

Definition 6 (Admissible set K).

K =
{
ΠL

i=1W
iKi : ki,j ∈ Ki,j , i ∈ [L], j ∈ [ni]

}
, (14)

where Ki = blkdiag
(
ki,1, . . . ,ki,ni

)
∈ Roi×ni

.

The admissible set K collects all possible social states
generated from different combinations of group decisions.
Consequently, (14) follows the same structures as (9) and (6).
We provide a concrete example.

Example 1 (Strategy distribution of interest). Consider the
example in Section III-A. Suppose that Manager 1 favors the
distribution s2,1∗ = [0.2, 0.2, 0.6]T over the three investment
targets but allows variations up to ε = 0.1, while Manager 2
prefers to invest at least 1/3 in both investment targets. Then,
the strategy distributions of interest are

K2,1 =
{
x ∈ ∆3 :

∥∥x− s2,1∗
∥∥
2
≤ ε

}
and (15a)

K2,2 =

{
x ∈ ∆2 : x1 ≥ 1

3
, x2 ≥ 1

3

}
. (15b)

Fig. 3: Strategy distri-
butions of interest over
3 investment targets.

Elements of K2,2 are two-
dimensional, corresponding to
the first two final strategies. To
visualize K2,2 together with K2,1 in
∆3, we lift elements in K2,2 to 3D
by appending a zero. If investors
are free to choose between the two
managers, i.e., K1,1 = ∆2, then
the admissible set K is the convex
hull of K2,1 and the lifted K2,2, as
shown in Figure 3.



Main Problem: Given the hierarchical framework (9)-(13),
we aim to determine conditions such that the social state x(t)
converges to a Nash equilibrium characterized by F within
the admissible set K (14). This framework introduces new
complexities due to multiple layers and additional challenges
from the coupling dynamics among decision groups and their
collective influence on x(t) via (9).

As will be illustrated in Section V, our solution suggests
a novel approach to constraining the social state within a
desired set D ⊆ ∆d, e.g. to avoid socially inefficient states.
If we can design strategy distributions of interest Ki,js such
that the resulting admissible set K satisfies K ⊆ D, and
the dynamics meets our conditions, then x(t) evolves and
converges within D. Moreover, if we design K1,1 = ∆d1,1

,
then this approach does not impose direct constraints on
individual decisions; instead, the constraint is embedded into
the strategy distributions of the proxies.

We impose mild assumptions derived from the classical
population games. Since not all results require all assumptions,
we will state explicitly which assumptions apply in each case.

Assumption 1. Ki,j , i ∈ [L], j ∈ [ni], are compactly convex.

Assumption 2. F is continuously differentiable.

Assumption 3. The learning dynamics (13) for each (i, j)-
group ensures that Ki,j is forward invariant.

Assumption 4. πTVi,j(s,π), i ∈ [L], j ∈ [ni], are Lipschitz
continuous w.r.t. s and π.

When L = 1 and K1,1 = ∆d1,1

, the assumptions reduce to
the ones in classical population games. Here, Assumption 3
means that each (i, j)-group makes decisions consistently
within its strategy distribution of interest Ki,j . Generally, if
Ki,j is a convex set, the constrained best response dynamics
(2) guarantees the forward invariance. Moreover, all learning
dynamics introduced in Section II satisfy Assumption 4.

IV. ANALYSIS

We focus on static models for payoff (10) in Section IV-A
and extend to dynamic models in Section IV-B.

A. Static Models for Payoff

We first characterize the system at its rest points, showing
that the corresponding social state is a Nash equilibrium of F
over the admissible set K. We then establish conditions under
which the system converges to these rest points.

Theorem 1 (Characterization at rest points). Suppose each
Vi,j in (13) is Nash stationary w.r.t. Ki,j . Let x̄ ∈ K be an
equilibrium social state when the system is at rest. Then, x̄ ∈
NEK(F ).

Proof. We use a bar on a variable to denote its value at a rest
point of (13). Since Vi,js are Nash stationary w.r.t. Ki.js, by
definition we have

(
si,j − s̄i,j

)T
π̄i,j ≤ 0, for si,j ∈ Ki,j .

Using (6), (11), and (14), we rewrite it compactly as(
Ki − T̄ i

)T
π̄i ⪯ 0, ki,j ∈ Ki,j , i ∈ [L], j ∈ [ni], (16)

where ⪯ denotes elementwise comparisons. For i = 1, since
K1 = k1,1 is a vector, we have(

K1 − T̄ 1
)T

π̄1 ≤ 0 (17a)

⇐⇒
(
T̄ 2W 1K1 − T̄ 2W 1T̄ 1

)T
π̄2 ≤ 0, (17b)

where (17b) follows from (12b). For i = 2 in (16), we obtain(
K2 − T̄ 2

)T
π̄2 ⪯ 0. By Property 1, W 1K1 ⪰ 0 and then(
W 1K1

)T (
K2 − T̄ 2

)T
π̄2 ≤ 0 (18a)

⇐⇒
(
K2W 1K1 − T̄ 2W 1K1

)T
π̄2 ≤ 0. (18b)

From (17b) and (18b), we get, for k1,j ∈ K1,j , k2,j ∈ K2,j ,(
K2W 1K1 − T̄ 2W 1T̄ 1

)T
π̄2 ≤ 0. (19)

By recursively expanding π̄i using (12b) and combining
with (W iKi . . .W 1K1)T (Ki+1− T̄ i+1)T π̄i+1 ≤ 0, we get(

KLWL−1KL−1 . . .W 1K1

− T̄LWL−1T̄L−1 . . .W 1T̄ 1
)T

WLT
p̄ ≤ 0, (20)

for ki,j ∈ Ki,j . By (9), (12a), and (14), this simplifies to

(x− x̄)T p̄ ≤ 0, x ∈ K. (21)

Then, the theorem follows because p̄ = F (x̄) from (10). ■

Theorem 1 does not require Assumption 1 to hold. However,
to show convergence results in the following, convexity is cru-
cial for learning dynamics, e.g., (2), to satisfy Assumption 3.

Lemma 1 (Set equivalence, [14, Theorem 3.2]). If C is a
convex set and α ≥ 0, β ≥ 0, then αC + βC = (α+ β)C.

Proposition 1 (Convexity of K). If Assumption 1 holds, then
K is convex.

Proof. Given two distinct points xp ∈ K, for p = 1, 2, there
exists Ki

p, for i ∈ [L], such that xp = WLKL
p . . .W 1K1

p ∈
K. Note that Ki

1 and Ki
2 belong to the same convex set,

denoted by Ki. Then, for each α, β ≥ 0, α+ β = 1, we have
αx1 + βx2

= (αWLKL
1 . . .W 1)K1

1 + (βWLKL
2 . . .W 1)K1

2 (22a)

= (αWLKL
1 . . .W 1 + βWLKL

2 . . .W 1)K̃1 (22b)

= (αWLKL
1 . . .K2

1 + βWLKL
2 . . .K2

2 )W
1K̃1 (22c)

= WLK̃L . . .W 1K̃1 ∈ K, (22d)

where K̃i ∈ Ki, which appears since we apply Lemma 1 to
(22a) and recursively to (22c). ■

Theorem 1 states that the rest points lie in NEK(F ). In the
following, we give conditions for convergence to these points.

Definition 7 (Potential game). A payoff function F : ∆d → Rd

is a potential game if there exists a C1 potential function
f : Rd → R, such that ∇xf(x) = F (x), for x ∈ ∆d.

While Theorem 1 describes the analog of the Nash sta-
tionarity property for the hierarchical structure, the following



lemma states the analog of the positive correlation property
and is used to prove the convergence results in Theorem 2.

Lemma 2. If each Vi,j is positively correlated, then
p(t)T ẋ(t) ≥ 0 for all t.

Proof.

p(t)T ẋ(t) = p(t)T
(
WLṪL(t)ML(t) + . . .

+WLTL(t) . . .W 1Ṫ 1(t)
)

(23a)

= πL(t)
T
ṪL(t)ML(t) + . . .+ π1(t)

T
Ṫ 1(t) (23b)

=

L∑
i=1

ni∑
j=1

M i
j(t)Vi,j

(
si,j(t),πi,j(t)

)T
πi,j(t) ≥ 0. (23c)

Here, (23b) follows from (12), while the inequality in (23c)
holds by positive correlation and Property 1. ■

Theorem 2 (Convergence for potential game F ). Let F be a
potential game, and let Assumptions 1 to 4 hold. Suppose that
each Vi,j in (13) is Nash stationary w.r.t. Ki,j and positively
correlated. Then, x(t) asymptotically approaches NEK(F ).

Proof. Since F is a potential game, there exists a potential
function f : Rd → R. Define f∗ = maxx∈K f(x), which
exists since K is compact. We introduce the Lyapunov function
V : K → R+, given by V (x) = f∗ − f(x). By Lemma 2,

d

dt
V (x(t)) = −∇xf(x(t))

T ẋ(t) = −p(t)T ẋ(t) ≤ 0. (24)

By (23c) and Assumption 4, we have p(t)T ẋ(t) → 0. Then, by
continuity, we have either Vi,j

(
si,j(t),πi,j(t)

)T
πi,j(t) → 0

or M i
j(t) → 0. For the former, by positive correlation, we have

si,j(t) → BRKi,j

(
πi,j(t)

)
. For the latter, it means no one

selects the (i, j)-group, rendering x(t) unaffected by si,j(t).
Therefore, by Theorem 1, we conclude x(t) → NEK(F ). ■

B. Dynamic Models for Payoff
Next, we consider scenarios where the payoff, instead of

being given by (10), follows the dynamical model:

q̇(t) = g(q(t),x(t)), p(t) = h(q(t),x(t)), t ≥ 0, (25)

where q(t) ∈ Ra and the functions g : Ra × ∆d → Ra and
h : Ra ×∆d → Rd are Lipschitz continuous.

Definition 8 (Payoff Dynamics Model, PDM [15]). A dynamic
model (25) is called a Payoff Dynamics Model (PDM) if it is
bounded-input bounded-output stable and recovers the static
model (10) in steady state, i.e.,

lim
t→∞

∥ẋ(t)∥ = 0 =⇒ lim
t→∞

p(t) = F (x(t)). (26)

Motivated by [6], we extend our results from Theorem 2 to
support PDMs that satisfy the following input-output property.

Definition 9 (Counterclockwise dissipativity, CCW [7]). A
dynamic model (25) is Counterclockwise dissipative (CCW)
if its input-output relation satisfies

αc := lim inf
T→+∞

∫ T

0

ṗ(t)Tx(t) dt > −∞. (27)

A potential game F is equivalent to a memoryless CCW
PDM [6]. Thus, the following theorem generalizes Theorem 2
in the sense that the convergence results hold for any CCW
PDM. More examples of CCW dynamics can be found in [6].

Theorem 3 (Convergence for CCW PDM). Let the payoff p(t)
be given by a CCW PDM, and let Assumptions 1 to 4 hold.
Suppose that each Vi,j in (13) is Nash stationary w.r.t. Ki,j

and positively correlated. Then, x(t) → BRK (p(t)).

Proof. We first prove that p(t)T ẋ(t) → 0. By integration by
parts and (27), we obtain∫ ∞

0

p(t)T ẋ(t) dt =
[
p(t)Tx(t)

]∞
0

−
∫ ∞

0

ṗ(t)Tx(t) dt

≤ 2∥p∥∞ − αc < ∞. (28)

Since p(t)T ẋ(t) ≥ 0 by (23), the integral in (28) exists. By
(23c) and Assumption 4, p(t)T ẋ(t) is Lipschitz continuous.
Therefore, by Barbalat’s lemma, we obtain that p(t)T ẋ(t) →
0. Then, by (23c) and positive correlation, we conclude that
x(t) tends to be the best response to p(t) within K. ■

Theorem 3 implies, when ẋ(t) → 0, x(t) → NEK(F ),
which follows from (26). Even when ẋ(t) ̸→ 0, we can
nevertheless conclude that x(t) tends to be the best response
to p(t) within K. This weaker convergence result compared
to Theorem 2 is since p(t) is given by the dynamic payoff
model instead of the static one.

V. APPLICATIONS TO SCENARIOS WITH CONSTRAINTS

We demonstrate the results on a routing scenario where
travelers use a navigation app that provides three route selec-
tion channels, each displaying an estimated travel time based
on the average travel time of current users in that channel.
Travelers are only informed of the estimated travel times
and are unaware of differences between the channels, e.g.,
variations in routing sets or dispatching rules. Further, travelers
select a channel based on the estimated times displayed. Each
channel then assigns its users to routes within its routing
set according to its dispatching strategy. For simplicity, we
assume that all channels share the same routing set, comprising
all possible routes. An illustration is provided in Figure 4,
where sY (t) ∈ ∆3 represents how the channel Y = A,B,C,
dispatches its users among the three routes at time t.

Fig. 4: Travelers select channels based on the estimated times
and each channel assigns its users to routes.



Let x(t) ∈ ∆3 be the proportion of travelers on each route,
then given the delay functions for links displayed in Figure 4,
we define the payoff by (negative) travel times:

F (x(t)) = −

 1 + x1(t) + x3(t)
1 + x2(t) + x3(t)

x1(t) + x2(t) + 2x3(t)

 . (29)

Then, at time t, each channel Y displays the estimated travel
time by −sY (t)TF (x(t)) and updates its dispatching strategy
sY (t) based on F (x(t)), for Y = A,B,C. This forms a two-
layer structure with W 1 = I3 and W 2 = [I3, I3, I3] ∈ R3×9,
where I3 is the 3-by-3 identity matrix. Note that sA(t), sB(t),
sC(t) in this example are aliases of s2,1(t), s2,2(t), s2,3(t).

We next demonstrate how to leverage this two-layer frame-
work to ensure constraint satisfaction. Consider two scenarios:
(i) the proportion of travelers on route 2, x2(t), must remain
below 15%, and (ii) the proportion of travelers on route 3,
x3(t), must not exceed 90%. The feasible sets, denoted as D,
are shown in Figure 5, where the vertex R3 is the unique Nash
equilibrium. In case (i), the constraint set includes the original
Nash equilibrium, whereas in case (ii), it does not.

We assume decisions made by travelers are unconstrained,
i.e., K1,1 = ∆3. If we design KA,KB ,KC such that K ⊆ D,
then x(t) ∈ D is ensured for all t. Since W 1 = I3, K is a
convex combination of the sets KA, KB , and KC . We present
design examples in Figure 5 where K = D. Let each channel
Y , update sY (t) by constrained best response dynamics (2):

ṡY (t) ∈ BRKY (F (x(t)))− sY (t), t ≥ 0. (30)

Since congestion games are potential games, we conclude by
Theorem 2 that x(t) satisfies the constraint and converges to
a Nash equilibrium within D, although travelers are unaware
of the constraints and react only to the estimated times.

Fig. 5: Constructions of KA,KB ,KC such that K = D.

Figure 6 demonstrates the simulation results. Thin yellow
lines represent the channels’ dispatching strategy trajectories,
and green dots and red crosses indicate the initial and final
dispatching strategies, respectively. The dotted pink line is
the route distribution trajectory when travelers select routes
directly. Despite convergence to the Nash equilibrium R3,
the constraints are violated during evolution. In contrast, the
trajectory for the two-layer case, shown by the thick blue line,
converges within D. In case (ii), it converges to a new Nash
equilibrium. Compared to the original Nash equilibrium R3,
flows are dispersed, showcasing the ability to steer the system
toward an equilibrium with greater social efficacy.

Fig. 6: Trajectory plots projected from the simplex to 2D.

VI. CONCLUSIONS

We introduced a hierarchical decision-making framework
for population games, extending the classical formulation to
multiple decision layers. We characterized equilibrium proper-
ties and established convergence under payoff conditions, such
as potential games and CCW payoff dynamics. Using these re-
sults, we proposed a novel approach for population games with
constraints that individuals are unaware of. Some interesting
avenues for future work include investigating broader classes
of learning dynamics that satisfy Assumption 3 over general
convex sets, as well as exploring broader classes of games that
converge within the hierarchical framework.
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