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Abstract— In multi-agent systems with coupled objectives
and/or constraints, agents may misreport information to achieve
individual gains. This issue is exacerbated when agents possess
local decision-making power, such as in multi-agent trajectory
planning, where the increased autonomy amplifies individual
benefits at the expense of a higher social cost. To overcome
this problem, we leverage the Vickrey-Clarke-Grove (VCG)
framework and propose a strategyproof, two-stage mechanism.
We further extend this mechanism to prioritized planning and
prevent agents from manipulating their priority.

I. INTRODUCTION

Trajectory planning has been studied extensively, leading
to various methodologies, such as the A* algorithm [1],
Rapidly-exploring Random Tree and Probabilistic Road Map
methods [2], optimal control approaches [3], [4], evolution-
ary algorithms [5], diffusion models [6], geometric methods
[7], and hierarchical decompositions [8]–[10]. An important
research theme now is to extend these methods to Multi-
Agent Systems (MASs), [11]. In MASs additional factors
must be considered, such as agent interactions, fairness
in handling coupling constraints, and mismatches between
agent- and system-level objectives. In a typical MAS tra-
jectory planning, each agent has objectives (often private)
and constraints (possibly coupled with the other agents),
while the system designer has a global objective, such as
minimizing the sum of agent objectives.

Integrating individual objectives into a system-level goal
falls within the scope of multi-objective optimization [12].
Some approaches employ evolutionary algorithms to explore
the entire Pareto-optimal front [13], while others focus on
specific solutions within this front by combining objec-
tives using prioritization or weightings. This widely adopted
method is known as prioritized planning, where either a
weighted sum of agents’ objective functions is optimized
or a priority order is assigned to optimize each function
sequentially. The significance of determining an appropriate
priority order is highlighted in [14].

The solution techniques for MAS trajectory planning can
be classified as centralized [14]–[17] or distributed [18]–[20].
In centralized methods, a central planner gathers information
from all agents to solve a system-level optimization problem
and communicates the planned trajectory back to the agents.
In distributed methods, agents share local information with
their neighbors iteratively, following predefined protocols,
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until convergence is achieved. For rational agents who
selfishly select strategies that maximize their own utility,
the problem can be modeled as optimizing the outcome at
equilibrium [14], [15].

In this paper, we consider MAS trajectory planning where
there is a central planner, but agents have local decision-
making power. Instead of strictly adhering to a trajectory
received from the central planner, the agent views it as a
recommendation and fine-tunes it to minimize its own cost
and to satisfy its local constraints.

An important consideration in this setup is to ensure that
agents have no incentive to misrepresent their private infor-
mation. One way to achieve this is to introduce appropriate
pricing mechanisms. For instance, in second-price auctions,
each agent submits their valuation of an item and the highest
bidder wins, but it pays the second-highest bid. Thus, bidders
cannot benefit from misrepresenting their true valuation.
This is an example of the Vickrey–Clarke–Groves (VCG)
mechanism [21], which ensures that reporting truthfully is a
weakly dominant strategy.

Our contributions are two-fold. First, we propose a two-
stage mechanism that adapts the VCG framework to tra-
jectory planning when agents have local decision-making
power. In the first stage, based on the information reported
by agents, a reference signal is generated and sent to all
agents. In the second stage, agents locally determine their
optimal decisions and pay according to prescribed payment
rules. We show that, with properly designed reference signals
and payment functions, this mechanism is strategyproof; that
is, it ensures that truthful reporting of objective functions and
constraints is a weakly dominant strategy. Next, we extend
the two-stage mechanism to prioritized planning.

References [16], [17] also make use of the VCG frame-
work, but focus on the scenario where the planner’s decisions
are binding and must be followed by all players. Another
related reference is [14], which shows the advantage of
determining the priority order based on agents’ objective
functions. However, when priority order is based on the
reported information, agents may misreport to influence the
planner’s decision – either directly by distorting the opti-
mization problem, or indirectly by securing a higher priority
which further impacts the decision-making process. While
VCG payments can resolve the former issue, we propose
additional designs to deal with the latter.

The remainder of the paper is structured as follows. Sec-
tion II provides an overview of VCG mechanisms. Section III
presents the two-stage mechanism and proves the dominance
of the truthful reporting strategy. Section IV extends the



mechanism to prioritized planning. Section V illustrates the
results on a case study of constrained Linear Quadratic
Regulator. Finally, Section VI gives conclusions.

II. AN OVERVIEW OF VCG MECHANISMS

In game theory, a mechanism is a set of rules that governs
how participants make decisions and receive outcomes to
achieve efficiency and fairness. In scenarios such as goods
allocation through auctions or decisions regarding public
projects, participants may strategically misrepresent their pri-
vate preferences. VCG mechanisms provide a strategyproof
way to implement efficient allocations for such problems in
quasi-linear environments (i.e., environments where partici-
pants’ preferences are linear with respect to money), ensuring
that participants truthfully reveal their preferences.

Consider a set of players i = 1, · · · , N , and a set of
possible outcomes, denoted by X . Each player i has a
valuation function vi : X → R+ and reports it as ṽi, which
is not necessarily equal to vi since the player may misreport.
For every outcome, the player is also assigned a payment pi.
Based on the reported functions, the outcome is given by

x∗ = argmax
x

N∑
i=1

ṽi(x), (1)

and the payment is

pi =
∑
j ̸=i

ṽj(x
∗) + hi(ṽ−i), (2)

where hi(ṽ−i) is a function that depends on, ṽ−i, the
reported functions of all players except i. Thus, player i seeks
to maximize its utility, vi(x)+pi. The optimization problem
for agent i can then be expressed as

max
ṽi

vi (x
∗(ṽi, ṽ−i)) +

∑
j ̸=i

ṽj (x
∗(ṽi, ṽ−i)) + hi(ṽ−i).

(3)

Since hi(ṽ−i) is independent of ṽi, it can be excluded from
the optimization. Therefore, reporting ṽi = vi aligns (1)
with (3), ensuring that x∗ maximizes player i’s utility (3),
making truthful reporting the best response for all players. A
common choice of hi(ṽ−i) is −maxx

∑
j ̸=i ṽj(x), in which

case pi is player i’s contribution to the social cost.

III. A STRATEGYPROOF TWO-STAGE MECHANISM FOR
MAS TRAJECTORY PLANNING

A. Problem Setting

Consider a set of N agents, and let [N ] = {1, · · · , N}
represent the index set of agents. For each i ∈ [N ], agent i
satisfies the discrete-time dynamics:

xi[k + 1] = fi (xi[k], ui[k]) , (4)

where xi[k] ∈ Rni and ui[k] ∈ Rmi denote the state and
input for agent i at time instant k ∈ N0 = {0, 1, 2, . . . },
respectively. We denote xi : N0 → Rni and ui : N0 → Rmi

as the state and input trajectory for agent i, respectively.
Moreover, we denote the composite state trajectories of

all agents as x = (x1, · · · , xN ) and the composite input
trajectories of all agents as u = (u1, · · · , uN ).

Each agent i has a nonnegative cost function ci evaluating
each pair (x, u) by ci(x, u). The central planner poses a
price, pi(x, u), for each agent i based on the state and input
trajectories. Each agent i has coupling constraints, ḡi(x, u) ⪯
0. Therefore, each agent i solves the optimization problem:

arg min
xi,ui

ci(x, u) + pi(x, u)

s.t. the dynamics (4) is satisfied
ḡi(x, u) ⪯ 0. (5)

Let yi = (xi, ui) denote all decision variables of agent i,
and let y = (y1, · · · , yN ) represent the composite decision
variables of all agents. We use the subscript −i to indicate
the variables of all agents except for agent i, e.g., y−i =
(y1, · · · , yi−1, yi+1, · · · , yN ). Thus, (5) can be rewritten as

argmin
yi

ci(yi, y−i) + pi(yi, y−i)

s.t. gi(yi, y−i) ⪯ 0. (6)

B. Proposed Two-stage Mechanism

In the following, we propose a strategyproof two-stage
mechanism designed for MASs where agents possess local
decision-making power, described in Mechanism 1. Com-
pared with the VCG mechanism discussed in Section II,
Mechanism 1 introduces the additional step (ii) where agents
locally solve for the optimal trajectories. This accounts
for the local decision-making power. From an optimization
perspective, in the VCG mechanism, agent i has the decision
variable c̃i(·), whereas in Mechanism 1, it has decision
variables c̃i(·) and yi, involving a larger decision space. In
the following, we show that reporting truthfully is a weakly
dominant strategy for Mechanism 1.

Theorem 1. Mechanism 1 is strategyproof.

Proof. The minimum cost player i can achieve by changing
its decision yi is

min
(yi,ỹ∗

−i(c̃,g̃))∈Fi

ci
(
yi, ỹ

∗
−i(c̃, g̃)

)
+ pi

(
yi, ỹ

∗
−i(c̃, g̃)

)
(9)

≥ min
y∈Fi

ci(y) +
∑
j ̸=i

c̃j(y)− hi(c̃−i, g̃−i), (10)

= ci (ỹ
∗(ci, c̃−i, gi, g̃−i)) + pi (ỹ

∗(ci, c̃−i, gi, g̃−i)) , (11)

where Fi = {y : gi(y) ⪯ 0, g̃j(y) ⪯ 0,∀j ̸= i}
and ỹ∗(ci, c̃−i, gi, g̃−i) is the reference signal when agent
i reports truthfully, and (11) is the total cost of agent i.
Thus, reporting c̃i = ci and g̃i = gi is a weakly dominant
strategy. ■

Note that hi(c̃−i, g̃−i) can be selected as

hi(c̃−i, g̃−i) = min
y

∑
j ̸=i

c̃j(y)

s.t. g̃−i(y) ⪯ 0, (12)

which mimics the design of externality cost described in (3).
The term Ig̃j

(
yi, ỹ

∗
−i(c̃, g̃)

)
describes that if agent i, after



Mechanism 1 with local decision-making power
(i) Each agent i ∈ [N ] reports its cost function c̃i and

its constraint function g̃i, which are not necessarily
truthful. Then, based on the reported functions g̃ =
(g̃1, · · · , g̃N ) and c̃ = (c̃1, · · · , c̃N ) for all i, the planner
determines a reference signal

ỹ∗(c̃, g̃) = argmin
y

N∑
i=1

c̃i(y)

s.t. g̃(y) ⪯ 0, (7)

and broadcast it to the agents.
(ii) Upon receiving the reference signal from the planner,

each agent i locally decides its optimal trajectory y∗i by
(6) and pays pi

(
y∗i , ỹ

∗
−i(c̃, g̃)

)
which is given by,

pi(yi, y−i) =
∑
j ̸=i

c̃j(yi, y−i) + Ig̃j (yi, y−i)

− hi(c̃−i, g̃−i), (8)

where hi(c̃−i, g̃−i) is an arbitrary function based on
information reported by others, and

If (yi, y−i) =

{
0 if f(yi, y−i) ⪯ 0

∞ otherwise.

receiving the reference signal, decides not to follow it and
causes a violation, then agent i is responsible for paying an
infinity cost.

IV. A STRATEGYPROOF TWO-STAGE MECHANISM FOR
PRIORITIZED PLANNING

In (7), the planner adopts a simple approach by summing
over agents’ objectives as a system-level goal. However, the
relative importance of agents’ objectives is often critical in
MAS applications, which gives rise to prioritized planning.
As mentioned in Section I, prioritized planning typically
follows two approaches: (i) optimizing a weighted sum of
agents’ objective functions or (ii) assigning a priority order
and optimizing sequentially from the highest to the lowest
priority. Both approaches target specific solutions along the
Pareto front. In cases where the objectives are convex, the
sequential optimization in (ii) can be reformulated as a
weighted optimization in (i) with appropriate weightings
[22]. In this section, we focus on the weighted method
and demonstrate how to integrate the proposed two-stage
mechanism with it.

Given a weighting vector w = (w1, · · · , wN ) ⪰ 0, the
element wi represents the relative importance of the agent i’s
cost function. Without loss of generality, we let

∑N
i=1 wi =

1. With the pre-assigned weightings, the planner aims to
select the reference trajectories that minimize the weighted
sum of agents’ cost functions. This scenario is summarized
in Mechanism 2, where the notation is carried over from
Mechanism 1.

Theorem 2. Mechanism 2 is strategyproof.

Proof. The minimum cost player i can achieve by changing
its decision yi is

min
(yi,ỹ∗

−i(c̃,g̃))∈Fi

ci
(
yi, ỹ

∗
−i(c̃, g̃)

)
+ pi

(
yi, ỹ

∗
−i(c̃, g̃)

)
(13)

≥ min
y∈Fi

ci(y) +
∑
j ̸=i

wj

wi
c̃j(y)− hi(c̃−i, g̃−i), (14)

= ci (ỹ
∗(ci, c̃−i, gi, g̃−i)) + pi (ỹ

∗(ci, c̃−i, gi, g̃−i)) , (15)

where Fi = {y : gi(y) ⪯ 0, g̃j(y) ⪯ 0,∀j ̸= i}
and ỹ∗(ci, c̃−i, gi, g̃−i) is the reference signal when agent
i reports truthfully and (15) is the total cost of agent i.
Note that (14) is just a scaling of (16) when agent i reports
truthfully, therefore ỹ∗(ci, c̃−i, gi, g̃−i) is a minimizer of
(14). As a result, reporting c̃i = ci and g̃i = gi is a weakly
dominant strategy. ■

A more complex scenario arises when the weightings
are determined based on the reported functions, denoted as
w(c̃, g̃). For example, if an unmanned aerial vehicle reports
a low battery, it should receive a higher priority weighting.
This type of scenarios is outlined in Mechanism 3. When
weightings are not pre-assigned, agents may misreport to
manipulate the planner’s decision both directly, by distort-
ing the optimization problem, and indirectly, by securing
higher priority, which further influences the decision-making
process. While VCG payments can resolve the issue of
direct manipulation, addressing the indirect influence through
priority requires additional measures. Before demonstrating
our solution, we state two assumptions.

Assumption 3. wi(c̃, g̃) > ϵ > 0 for all i with some fixed
ϵ independent of c̃ and g̃. Equivalently, the ratios between
all pairs of weightings are bounded by a constant R, i.e.,
wi(c̃,g̃)
wj(c̃,g̃)

≤ R,∀i, j.

Note that Assumption 3 ensures that each agent has a
certain amount of importance and will not be neglected
regardless of the information from all agents is reported.

Assumption 4. If (c̃i, g̃i) ̸= (ci, gi), then ci
(
y∗i , ỹ

∗
−i(c̃, g̃)

)
+

pi
(
y∗i , ỹ

∗
−i(c̃, g̃)

)
< ci(ỹ

∗(c̃, g̃)) + pi(ỹ
∗(c̃, g̃)), for all i.

This means that, if agent i reports cost/constraint functions
untruthfully, the optimal decision made by agent i, y∗i , will
not match the reference suggested by the planner, ỹ∗i (c̃, g̃). A
further discussion on Assumption 4 is given in the Appendix.

Theorem 5. Suppose Assumption 3 and Assumption 4 hold.
Then, Mechanism 3 is strategyproof.

Proof. The minimum cost player i can achieve by changing



Mechanism 2 with pre-assigned weightings
(i) Each agent i ∈ [N ] reports its cost function c̃i and

its constraint function g̃i, which are not necessarily
truthful. Then, based on the reported functions g̃ =
(g̃1, · · · , g̃N ), c̃ = (c̃1, · · · , c̃N ), and the pre-assigned
weighting w, the planner determines a reference signal

ỹ∗(c̃, g̃) = argmin
y

N∑
i=1

wic̃i(y)

s.t. g̃(y) ⪯ 0, (16)

and broadcast it to the agents.
(ii) Upon receiving the reference signal from the planner,

each agent i locally decides its optimal trajectory y∗i by
(6) and pays pi

(
y∗i , ỹ

∗
−i(c̃, g̃)

)
which is given by,

pi(yi, y−i) =
∑
j ̸=i

wj

wi
c̃j(yi, y−i) + Ig̃j (yi, y−i)

− hi(c̃−i, g̃−i), (17)

where hi(c̃−i, g̃−i) is an arbitrary function based on
information reported by others, and

If (yi, y−i) =

{
0 if f(yi, y−i) ⪯ 0

∞ otherwise.

its decision yi is

min
(yi,ỹ∗

−i(c̃,g̃))∈Fi

ci
(
yi, ỹ

∗
−i(c̃, g̃)

)
+ pi

(
yi, ỹ

∗
−i(c̃, g̃)

)
(20)

= ci
(
y∗i , ỹ

∗
−i(c̃, g̃)

)
− hi(c̃−i, g̃−i)

+
∑
j ̸=i

(
wj(c̃, g̃)

wi(c̃, g̃)
+Rδ (y∗i , ỹ

∗
i (c̃, g̃))

)
c̃j

(
y∗i , ỹ

∗
−i(c̃, g̃)

)
(21)

= ci
(
y∗i , ỹ

∗
−i(c̃, g̃)

)
− hi(c̃−i, g̃−i)

+
∑
j ̸=i

[
wj(ci, c̃−i, gi, g̃−i)

wi(ci, c̃−i, gi, g̃−i)
+Ai,j

]
c̃j

(
y∗i , ỹ

∗
−i(c̃, g̃)

)
(22)

(a)

≥ ci
(
y∗i , ỹ

∗
−i(c̃, g̃)

)
− hi(c̃−i, g̃−i)

+
∑
j ̸=i

wj(ci, c̃−i, gi, g̃−i)

wi(ci, c̃−i, gi, g̃−i)
c̃j

(
y∗i , ỹ

∗
−i(c̃, g̃)

)
(23)

≥ min
y∈Fi

ci(y) +
∑
j ̸=i

wj(ci, c̃−i, gi, g̃−i)

wi(ci, c̃−i, gi, g̃−i)
c̃j(y)

− hi(c̃−i, g̃−i) (24)
= ci (ỹ

∗(ci, c̃−i, gi, g̃−i)) + pi (ỹ
∗(ci, c̃−i, gi, g̃−i)) , (25)

where Fi = {y : gi(y) ⪯ 0, g̃j(y) ⪯ 0,∀j ̸= i} and

Ai,j =
wj(c̃, g̃)

wi(c̃, g̃)
− wj(ci, c̃−i, gi, g̃−i)

wi(ci, c̃−i, gi, g̃−i)
+Rδ (y∗i , ỹ

∗
i (c̃, g̃)) .

To prove (a) holds, we prove Ai,j ≥ 0 by considering the
two cases: y∗i = ỹ∗i (c̃, g̃) and y∗i ̸= ỹ∗i (c̃, g̃). When y∗i =

Mechanism 3 with weightings based on reported information
(i) Each agent i ∈ [N ] reports its cost function c̃i and

its constraint function g̃i, which are not necessarily
truthful. Then, based on the reported functions g̃ =
(g̃1, · · · , g̃N ), c̃ = (c̃1, · · · , c̃N ), the planner decides
a weighting w(c̃, g̃) and determines a reference signal

ỹ∗(c̃, g̃) = argmin
y

N∑
i=1

wi(c̃, g̃)c̃i(y)

s.t. g̃(y) ⪯ 0, (18)

and broadcast it to the agents.
(ii) Upon receiving the reference signal from the planner,

each agent i locally decides its optimal trajectory y∗i by
(6) and pays pi

(
y∗i , ỹ

∗
−i(c̃, g̃)

)
which is given by,

pi(yi, y−i) =
∑
j ̸=i

wj(c̃, g̃)

wi(c̃, g̃)
c̃j(yi, y−i) + Ig̃j (yi, y−i)

+
∑
j ̸=i

Rc̃j(yi, y−i)δ(yi, ỹ
∗
i (c̃, g̃))− hi(c̃−i, g̃−i),

(19)

where δ(a, b) = 0 if a = b and 1 otherwise, hi(c̃−i, g̃−i)
is an arbitrary function based on information reported
by others, and

If (yi, y−i) =

{
0 if f(yi, y−i) ⪯ 0

∞ otherwise.

ỹ∗i (c̃, g̃), Assumption 4 implies that c̃i = ci and g̃i = gi,
leading to Ai,j = 0. When y∗i ̸= ỹ∗i (c̃, g̃), Assumption 3
ensures that wj(ci,c̃−i,gi,g̃−i)

wi(ci,c̃−i,gi,g̃−i)
≤ R, resulting in Ai,j ≥ 0.

Note that ỹ∗(ci, c̃−i, gi, g̃−i) is the reference signal when
agent i reports truthfully and (25) is the total cost of agent
i. As a result, reporting c̃i = ci and g̃i = gi is a weakly
dominant strategy. ■

When agent i lies such that the weightings change,
the importance of c̃j relative to ci alters, but is upper
bounded by R according to Assumption 3. The term∑

j ̸=i Rc̃j
(
yi, ỹ

∗
−i(c̃, g̃)

)
penalizes the agent for indirectly

influencing the planner’s decision by affecting the determi-
nation of weightings.

V. CASE STUDY: CONSTRAINED
LINEAR-QUADRATIC-REGULATOR

We now demonstrate the proposed mechanisms using a
MAS with linear dynamics, asymmetric coupling constraints,
and a quadratic cost on a finite time horizon. The linear
dynamics (4) are given as

xi[k + 1] = Aixi[k] +Biui[k], (26)

where Ai ∈ R4×4, Bi ∈ R4×2, ui[k] ∈ R2 is the control
input, and xi[k] = (pxi [k], p

y
i [k], v

x
i [k], v

y
i [k]) ∈ R4 with its

entries representing position and velocity in the x- and y-
directions at time instant k = 0, · · · ,K. We assign each



Fig. 1. This figure demonstrates when weightings are determined based on reported information. The upper row provides the signals generated from
the planner while the lower row shows the trajectory optimized locally by the agents for the following three cases: (Left) All agents report truthfully,
leading to the weightings w = (32, 16, 8, 4, 2, 1). (Middle) Agent-6 lies in its final destination to get a higher priority, leading to the weightings
w = (32, 16, 8, 2, 1, 4). (Right) Agent-6 lies in its safe distance constraint to get a higher priority, leading to the weightings w = (16, 8, 4, 2, 1, 32).

agent i a initial state x0
i , a desired final state xK

i and an input
uK
i that maintains it at that state, i.e., xK

i = Aix
K
i +BuK

i .
The cost function ci(x, u) in (5) is quadratic:

ci(x, u) =

K−1∑
k=0

(
xi[k]− xK

i

)T
Qi

(
xi[k]− xK

i

)
+
(
ui[k]− uK

i

)T
Ri

(
ui[k]− uK

i

)
, (27)

where 0 ⪯ Qi ∈ R4×4 and 0 ≺ Ri ∈ R2×2. The coupling
constraints ḡ(x, u) in (5) encode a safe distance, di, from
agent i to all others: ∀i ̸= j and k = 0, · · · ,K,

||pxi [k]− pxj [k]||2 + ||pyi [k]− pyj [k]||
2 ≥ d2i . (28)

In addition, we impose hard constraints on confining agent i’s
final state to xK

i . In the setting described above, the reported
information from agent i to the planner is

m̃i =
(
Ãi, B̃i, Q̃i, R̃i, x̃

0
i , x̃

K
i , ũK

i , d̃i

)
, (29)

where the symbol “∼” indicates that the information pro-
vided may not be truthful. The resulting optimization prob-
lems are nonlinear and nonconvex, and we solve them using
IPOPT [23] and Couenne [24].

In Figure 1, we present the results when 6 weightings are
determined based on the reported information and assigned
by a permutation of the values (1, 2, 4, 8, 16, 32). We suppose
the agent with a farther destination or a smaller required

safety distance is assigned a higher weighting. The upper row
shows the signals generated by the planner, while the lower
row displays the actual trajectories chosen by the agents.

When all agents report truthfully, the results are shown on
the left side. In this case, the agent with a lower weighting
follows a more curved path, as seen with agent 6. Therefore,
agent 6 might misreport its destination to be farther to
obtain a higher weighting. The results of this scenario are
displayed in the middle, where agents 4 and 5 are forced
to deviate from their preferred paths as agent 6 receives a
higher weighting. Agent 6, however, ignores the signal it
manipulated and optimizes its trajectory based on its true
destination. Without additional penalties, agent 6 benefits
from a lower-cost trajectory with misrepresentation.

One might expect the issue to be resolved using a VCG
payment, which accounts for externalities. However, the
result shows that even with a VCG payment, agent 6 can
reduce its cost from 62.9 (truthful reporting) to 15.7 (mis-
reporting). This outcome is caused by the agent influencing
the weighting determination, which indirectly impacts the
planner’s decision. By applying Theorem 5 and imposing
additional payments for manipulating the weightings, agent
6’s cost rises to 169.9 when lying, making truthful reporting
a better strategy.

In the scenario on the right, agent 6 falsely reports a lower
safety distance to receive the highest weighting. Compared



to the left case, all the other agents’ signals are affected and
agent 6 obtains a significantly better trajectory. As in the
middle case, applying only the VCG payment still allows
agent 6 to reduce its cost from 62.9 (truthful reporting)
to 1.7 (misreporting). However, by applying the payment
scheme from Theorem 5, agent 6 incurs a cost of 162.3
when misreporting, which is higher than reporting truthfully.
It is important to note that in all three cases, agents other
than agent 6 report truthfully. Therefore, the signals provide
optimal solutions for these agents, as confirmed by the
consistency between the executed trajectories (lower row)
and the generated signals (upper row).

VI. CONCLUSIONS

We proposed a two-stage mechanism for MAS trajectory
planning where agents have local decision-making power.
Rather than strictly adhering to the centrally planned tra-
jectory, agents can treat it as a recommendation to be
refined, allowing them to adjust to local changes. We first
proved that the proposed mechanism is strategyproof. Next,
to accommodate the prevalent use of prioritized planning in
the literature, we extended this mechanism to prevent the
manipulation of priority weightings. In future research we
will address explicit priority orders – rather than weightings
– and explore mechanisms to prevent their manipulation.
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APPENDIX

To further examine Assumption 4, we first state the
following proposition.

Proposition 1. Let K be a compact set, C(K) be all
continuous functions over K, and X = (C(K), || · ||∞) be
the metric space with infinity norm. Suppose for a given
f0 ∈ C(K), we have y∗0 = argminy∈K f0(y). Then, the
set of objective functions that have the same minimizer,
Sf0 := {f ∈ C(K) : y∗0 = argminy∈K f(y)}, is a meager
set in X in the Baire category sense [25].

To see the connection to Assumption 4, let f0 represent
the objective function for the central planner when agent
i reports untruthfully, c̃i ̸= ci. Correspondingly, y∗0 is the
recommended trajectory for agent i provided by the planner,
ỹ∗i (c̃, g̃). Assumption 4 supposes that ci /∈ Sf0 , rendering
y∗i ̸= ỹ∗i (c̃, g̃). This is not a restrictive assumption, since Sf0

is a meager set by the proposition above.
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