Ordered formation control and affine transformation of Multi-Agent Systems without global reference frame

Y. W. Chen¹ , M. L. Chiang² , L. C. ${\sf Fu}^{1,3}$

¹Department of Electrical Engineering National Taiwan University

²Graduate Institute of Automation Technology National Taipei University of Technology

³Center for Artificial Intelligence and Advanced Robotics National Taiwan University

Y.W. Chen , M.L. Chiang , L.C. Fu (NTU)

Ordered Formation Control of MAS

Outline

Introduction

- What is MAS Formation Control?
- What is our objective?
- What is the importance?
- 2 Problem Formulation
- Phase Penalty Flow Exchange Mechanism
 - Motivation
 - Design
- ④ Simulation Result

Outline

Introduction

• What is MAS Formation Control?

- What is our objective?
- What is the importance?

Problem Formulation

- 3 Phase Penalty Flow Exchange Mechanism
 - Motivation
 - Design
- Interpretation Simulation Result

5 Conclusion

Problem Formulation Phase Penalty Flow Exchange Mechanism Simulation Result Conclusion What is MAS Formation Control? What is our objective? What is the importance?

Introduction - formation control

Outline

Introduction

- What is MAS Formation Control?
- What is our objective?
- What is the importance?

Problem Formulation

- 3 Phase Penalty Flow Exchange Mechanism
 - Motivation
 - Design
- 4 Simulation Result

5 Conclusion

Problem Formulation Phase Penalty Flow Exchange Mechanism Simulation Result Conclusion

What is MAS Formation Control? What is our objective? What is the importance?

Introduction - objective

Ordered formation

Problem Formulation Phase Penalty Flow Exchange Mechanism Simulation Result Conclusion What is MAS Formation Control? What is our objective? What is the importance?

- Ordered formation
- Tracking

Problem Formulation Phase Penalty Flow Exchange Mechanism Simulation Result Conclusion What is MAS Formation Control? What is our objective? What is the importance?

- Ordered formation
- Tracking
- Rotating

Problem Formulation Phase Penalty Flow Exchange Mechanism Simulation Result Conclusion

What is MAS Formation Control? What is our objective? What is the importance?

- Ordered formation
- Tracking
- Rotating
- Transforming

Problem Formulation Phase Penalty Flow Exchange Mechanism Simulation Result Conclusion What is MAS Formation Control? What is our objective? What is the importance?

- Ordered formation
- Tracking
- Rotating
- Transforming

Problem Formulation Phase Penalty Flow Exchange Mechanism Simulation Result Conclusion What is MAS Formation Control? What is our objective? What is the importance?

- Ordered formation
- Tracking
- Rotating
- Transforming
- Distributed
 Communications
- Nonholonomic Constraints

Outline

Introduction

- What is MAS Formation Control?
- What is our objective?
- What is the importance?

Problem Formulation

- 3 Phase Penalty Flow Exchange Mechanism
 - Motivation
 - Design
- Interpretation Simulation Result

5 Conclusion

Problem Formulation Phase Penalty Flow Exchange Mechanism Simulation Result Conclusion What is MAS Formation Control? What is our objective? What is the importance?

Introduction - importance

Ordered formation

- Tracking
- Rotating

• Transforming

Problem Formulation Phase Penalty Flow Exchange Mechanism Simulation Result Conclusion What is MAS Formation Control? What is our objective? What is the importance?

Introduction - importance

- Ordered formation sensor fusion
- Tracking
- Rotating

• Transforming

Problem Formulation Phase Penalty Flow Exchange Mechanism Simulation Result Conclusion What is MAS Formation Control? What is our objective? What is the importance?

Introduction - importance

- Ordered formation sensor fusion group synthesis
- Tracking
- Rotating

Transforming

Problem Formulation Phase Penalty Flow Exchange Mechanism Simulation Result Conclusion What is MAS Formation Control? What is our objective? What is the importance?

Introduction - importance

- Ordered formation sensor fusion group synthesis
- Tracking common task
- Rotating

• Transforming

Problem Formulation Phase Penalty Flow Exchange Mechanism Simulation Result Conclusion What is MAS Formation Control? What is our objective? What is the importance?

Introduction - importance

- Ordered formation sensor fusion group synthesis
- Tracking common task
- Rotating area extension bias reduction
- Transforming

Problem Formulation Phase Penalty Flow Exchange Mechanism Simulation Result Conclusion What is MAS Formation Control? What is our objective? What is the importance?

Introduction - importance

- Ordered formation sensor fusion group synthesis
- Tracking common task
- Rotating area extension bias reduction
- Transforming adaptation

Outline

Introduction

- What is MAS Formation Control?
- What is our objective?
- What is the importance?

2 Problem Formulation

- 3 Phase Penalty Flow Exchange Mechanism
 - Motivation
 - Design
- Interpretation Simulation Result

5 Conclusion

Problem Formulation

- Three main factors:
 - communications
 - desired shape
 - agents

Problem Formulation - desired formation shape

- pros: frame-invariant
- cons: centroid determination

Problem Formulation - dynamic model

• Recall nonholonomic constraint:

$$\dot{\boldsymbol{r}}_{k} = \nu_{k} \begin{bmatrix} \cos \varphi_{k} \\ \sin \varphi_{k} \end{bmatrix}$$
$$\dot{\varphi}_{k} = u_{k}$$

Problem Formulation - dynamic model

• Recall nonholonomic constraint:

$$\dot{\boldsymbol{r}}_{k} = \nu_{k} \begin{bmatrix} \cos \varphi_{k} \\ \sin \varphi_{k} \end{bmatrix}$$
$$\dot{\varphi}_{k} = u_{k}$$

• Extended Model:

$$\dot{m{r}}_k = m{d}_k^* (arpi m{G}_k - \dot{m{G}}_k m{R}_{rac{\pi}{2}}) iggl[egin{smallmatrix} \cos heta_k \ \sin heta_k \end{bmatrix} + m{m{v}}_k \ \dot{m{ heta}}_k = m{m{m{u}}}_k, \dot{m{m{v}}}_k = m{ m{ m{ m{ m{ m{ m{ m{v}}}}}}_k} = m{m{ m{ m{ m{x}}}}_k,$$

Problem Formulation - dynamic model

• Recall nonholonomic constraint:

$$\dot{\boldsymbol{r}}_{k} = \nu_{k} \begin{bmatrix} \cos \varphi_{k} \\ \sin \varphi_{k} \end{bmatrix}$$
$$\dot{\varphi}_{k} = u_{k}$$

• Extended Model:

$$\dot{\mathbf{r}}_{k} = d_{k}^{*}(arpi \mathbf{G}_{k} - \dot{\mathbf{G}}_{k} \mathbf{R}_{rac{\pi}{2}}) egin{bmatrix} \cos heta_{k} \ \sin heta_{k} \end{bmatrix} + \mathbf{v}_{k} \ \dot{ heta}_{k} = ar{u}_{k}, \dot{\mathbf{v}}_{k} = \mathbf{ au}_{k}$$

Problem Formulation - dynamic model

• Recall nonholonomic constraint:

$$\dot{\boldsymbol{r}}_{k} = \nu_{k} \begin{bmatrix} \cos \varphi_{k} \\ \sin \varphi_{k} \end{bmatrix}$$
$$\dot{\varphi}_{k} = u_{k}$$

• Extended Model:

$$\dot{\mathbf{r}}_{k} = \mathbf{d}_{k}^{*}(arpi \mathbf{G}_{k} - \dot{\mathbf{G}}_{k}\mathbf{R}_{rac{\pi}{2}}) egin{bmatrix} \cos heta_{k} \ \sin heta_{k} \end{bmatrix} + \mathbf{v}_{k} \ \dot{ heta}_{k} = ar{u}_{k}, \dot{\mathbf{v}}_{k} = \mathbf{\tau}_{k}$$

Problem Formulation - dynamic model

• Recall nonholonomic constraint:

$$\dot{\boldsymbol{r}}_{k} = \nu_{k} \begin{bmatrix} \cos \varphi_{k} \\ \sin \varphi_{k} \end{bmatrix}$$
$$\dot{\varphi}_{k} = u_{k}$$

• Extended Model:

$$\dot{\mathbf{r}}_{k} = \mathbf{d}_{k}^{*} (\varpi \mathbf{G}_{k} - \dot{\mathbf{G}}_{k} \mathbf{R}_{\frac{\pi}{2}}) \begin{bmatrix} \cos \theta_{k} \\ \sin \theta_{k} \end{bmatrix} + \mathbf{v}_{k}$$
$$\dot{\theta}_{k} = \bar{u}_{k}, \dot{\mathbf{v}}_{k} = \mathbf{\tau}_{k}$$

Problem Formulation - proposed problem

Given Information: (*M* agents)

- desired shape $\{d_k^*, \theta_{ki}^*\}$
- tracking reference r_d
- angular velocity ϖ_0

• transformation reference G^*

Objectives:

•
$$\theta_{kj} \to \theta^*_{kj}$$

•
$$\mathbf{r}_k \to d_k^* \mathbf{G}_k [\sin \theta_k, -\cos \theta_k]^T + \mathbf{r}_d$$

- $\bar{u}_k \to \varpi_0$ $G_k \to G^*$

Problem Formulation - proposed problem

Given Information: (*M* agents)

- desired shape $\{d_k^*, \theta_{kj}^*\}$
- tracking reference r_d
- angular velocity $arpi_0$
- transformation reference G^*

Objectives:

- $\theta_{kj} \to \theta^*_{kj}$
- $\mathbf{r}_k \to d_k^* \mathbf{G}_k [\sin \theta_k, -\cos \theta_k]^T + \mathbf{r}_d$
- $\bar{u}_k \to \varpi_0$
- $G_k \rightarrow G^*$

Outline

Introduction

- What is MAS Formation Control?
- What is our objective?
- What is the importance?

Problem Formulation

- Phase Penalty Flow Exchange Mechanism
 Motivation
 - Design

Interpretation Simulation Result

5 Conclusion

Motivation Design

Mechanism - motivation

• Desired formation shape:

2)

• Assume that $N_1 = \{2, 5\}$, $N_2 = \{3, 1\}$, $N_3 = \{4, 2\}$, $N_4 = \{5, 3\}$, $N_5 = \{1, 4\}$

Motivation Design

Mechanism - motivation

• Desired formation shape:

2

Motivation Design

Mechanism - motivation

• Desired formation shape:

2

Motivation Design

Mechanism - motivation

• Desired formation shape:

2)

• Assume that $N_1 = \{2, 5\}$, $N_2 = \{3, 1\}$, $N_3 = \{4, 2\}$, $N_4 = \{5, 3\}$, $N_5 = \{1, 4\}$

Motivation Design

Mechanism - motivation

• Desired formation shape:

• Assume that $N_1 = \{2, 5\}$, $N_2 = \{3, 1\}$, $N_3 = \{4, 2\}$, $N_4 = \{5, 3\}$, $N_5 = \{1, 4\}$

3

Motivation Design

Mechanism - motivation

• Desired formation shape:

- Assume that $N_1 = \{2, 5\}$, $N_2 = \{3, 1\}$, $N_3 = \{4, 2\}$, $N_4 = \{5, 3\}$, $N_5 = \{1, 4\}$
- Two directions cancel out
- Stuck in incorrect order

Motivation Design

Mechanism - motivation

• Desired formation shape:

- Assume that $N_1 = \{2, 5\}$, $N_2 = \{3, 1\}$, $N_3 = \{4, 2\}$, $N_4 = \{5, 3\}$, $N_5 = \{1, 4\}$
- Two directions cancel out
- Stuck in incorrect order
- ⇒ Time varying weight to resolve cancellation

Outline

Introduction

- What is MAS Formation Control?
- What is our objective?
- What is the importance?

Problem Formulation

- Phase Penalty Flow Exchange Mechanism
 - Motivation

Design

Interpretation Simulation Result

5 Conclusion

Motivation Design

Mechanism - design I

Definition

- phase penalty ζ_k : $\sum_{j \in N_k} (1 \cos(\theta_{kj} \theta_{kj}^*))$
- weighting parameter w_k : $w_k(t) \ge w_k > 0$
- phase penalty flow Φ_k : $(w_k \underline{w}_k)\zeta_k$

Motivation Design

Mechanism - design I

Definition

- phase penalty ζ_k : $\sum_{j \in N_k} (1 \cos{(\theta_{kj} \theta^*_{kj})})$
- weighting parameter w_k : $w_k(t) \ge w_k > 0$
- phase penalty flow Φ_k : $(w_k \underline{w}_k)\zeta_k$

Phase Penalty Flow Exchange Mechanism

Each agent distributes out its Φ_k to neighbors.

Example

Denote ϕ_{kj} as the amount agent-k distributes to agent-j, then $\Phi_k = \sum_{j \in N_k} \phi_{kj}$

Y.W. Chen , M.L. Chiang , L.C. Fu (NTU)

Ordered Formation Control of MAS

Motivation Design

Mechanism - design II

How to design the update law of w_k?
 Consider a fixed formation with exchange mechanism.

Motivation Design

Mechanism - design II

How to design the update law of w_k?
 Consider a fixed formation with exchange mechanism.

• Net flow:
$$-\Phi_k + \sum_{j \in N_k} \phi_{jk}$$

Total net flow:
$$\sum_{k=1}^{M} (-\Phi_k + \sum_{j \in N_k} \phi_{jk}) = 0$$

Motivation Design

Mechanism - design II

How to design the update law of w_k?
 Consider a fixed formation with exchange mechanism.

• Net flow:
$$-\Phi_k + \sum_{j \in N_k} \phi_{jk}$$

Total net flow:
$$\sum_{k=1}^{M} (-\Phi_k + \sum_{j \in N_k} \phi_{jk}) = 0$$

Motivation Design

Mechanism - design II

- How to design the update law of w_k?
 Consider a fixed formation with exchange mechanism.
 - Net flow: $-\Phi_k + \sum_{j \in N_k} \phi_{jk}$
 - Total net flow: $\sum_{k=1}^{M} (-\Phi_k + \sum_{j \in N_k} \phi_{jk}) = 0$
 - $= \frac{d}{dt} \left(\sum_{k=1}^{M} \Phi_k \right) = 0 = \sum_{k=1}^{M} \dot{w}_k \zeta_k$

Motivation Design

Mechanism - design II

How to design the update law of w_k?
 Consider a fixed formation with exchange mechanism.

• Net flow:
$$-\Phi_k + \sum_{j \in N_k} \phi_{jk}$$

Total net flow:
$$\sum_{k=1}^{M} (-\Phi_k + \sum_{j \in N_k} \phi_{jk}) = 0$$

$$\frac{d}{dt} \left(\sum_{k=1}^{M} \Phi_k \right) = 0 = \sum_{k=1}^{M} \dot{w}_k \zeta_k$$

 $\Rightarrow \dot{w}_k = \frac{c}{\zeta_k} (-\Phi_k + \sum_{j \in N_k} \phi_{jk}), c \text{ is a constant}$

Outline

Introduction

- What is MAS Formation Control?
- What is our objective?
- What is the importance?

Problem Formulation

- 3 Phase Penalty Flow Exchange Mechanism
 - Motivation
 - Design

4 Simulation Result

5 Conclusion

Simulation Results

Overall result

Outline

Introduction

- What is MAS Formation Control?
- What is our objective?
- What is the importance?

Problem Formulation

- 3 Phase Penalty Flow Exchange Mechanism
 - Motivation
 - Design

Interpretation Simulation Result

5 Conclusion

- Design a control law such that the MAS tracks, rotates, adapts, and forms in order.
- Propose "phase penalty flow exchange mechanism" to achieve ordered formation.
- Provide stability analysis and some simulation results.
- Future work: extend to spatial case (3D)

