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Abstract— The purpose of this paper is to design a control law
such that the multi-agent system can form into arbitrary shape,
rotate around the centroid which tracks a given trajectory, and
further adjust the formation into various shapes based on the
affine transformation command. Moreover, the specified order
between agents is crucial in some tasks, and hence ordered
formation is addressed in our approach. The information for
controller is measured locally from the neighbors and is in
the local reference frames. To facilitate the goals, we propose
an extended model and introduce the penalty flow exchanging
mechanism which deals with the ordered formation. The control
law is derived based on stability analysis, and a simulation
example is provided to validate our results.

I. INTRODUCTION

The researches about Multi-Agent control Systems (MAS)
have attracted significant attention for its wide applications in
the past two decades. It covers not only control engineering
but also consensus algorithm [1], [2], algebraic graph theory
[3], [4], and matrix theory [4]–[6]. Formation control, as one
of the popular topics in MAS, is to design control laws which
steer MAS to form into the desired topology cooperatively.
Formation with fixed desired positions is considered in
[3], [6], [7]. Nevertheless, most of the applications require
movements. Thus, the authors in [2], [4], [8] improve the
static formation problem such that the MAS can track a given
trajectory in addition to form into a predefined shape. In the
meantime, some tasks also require the MAS to rotate at a
given angular velocity as in [9]–[11].

Besides, the authors in [4], [10], [12] allow the formation
shape to be adjusted by an affine transformation command.
Such command is crucial when adapting to the environment
such as avoiding obstacles, e.g., [4], [12]. Furthermore, [5],
[9] focus on circular formation, and the authors in [10],
[12] extend the case to the affine transformation of circle.
While a more general problem which considers arbitrary
formation shape is discusseded in [3], [6], [11], [13], the
order between agents becomes an issue. To solve the order
problem, in [5], [14], a pursuit formation strategy is used
where only single neighbor is considered; in [11], [15], a
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common global frame is needed, and [7], [13], [16] assume
all-to-all communications or restrictions on initial conditions.

Communication links of the MAS is another topic. The au-
thors in [16] assume centralized communications. Recently,
more researches focus on distributed communications case,
which means that each agent can get information from the
initially communicable agents in the formation process, e.g.,
[6], [12], [13]. Instead of general distributed cases, some
papers consider only specific types of distributed communi-
cation topology due to the distance-based property or rigidity
issue, such as [3], [4]. Still another topic is the requirement of
a common global reference frame. In [10], [12], [15], global
frame is required for agents’ absolute positions; in [2], [17],
the desired relative position vectors are defined with respect
to the global frame; in [11], [14], information is measured in
the aligned frame. However, to maintain a common global
frame is challenging. Thus, the control law based on each
agent’s local frame is desired and discussed in [6]–[8], [13].

In this paper, we propose an extended model to facilitate
the design, and derive the control law in the local frames and
with distributed communications. Such control law steers the
numbered MAS with random initial conditions to form into
an arbitrary shape with a specified order, and rotate around
the centroid which tracks a given trajectory. In addition,
the formation shape can be changed to adapt to the envi-
ronment by the affine transformation command. A related
work to ours is [12], where they particularly consider the
unordered circular formation, assume the desired trajectory
is accessible to all agents, and require a common global
frame. In summary, the main contributions of this paper
are that we propose an extended model which additionally
considers arbitrary formation shape and affine transformation
commands, and design a novel control law that achieves
ordered formation without common global frame and initial
condition restrictions.

This paper is organized as follows: In Section II, we depict
our problem and some existing results. In Section III, our
extended model is proposed and the problem is re-formulated
with the extended model. In Section IV, we introduce the
phase penalty exchanging mechanism and derive the control
law with stability analysis. In Section V, an example is
illustrated and the conclusion is given in Section VI.

II. PROBLEM DESCRIPTION AND
PRELIMINARIES

The objective of this paper is to make the numbered MAS
form into an arbitrarily given shape and in specified order,
while rotating at the given angular velocity $0 around the
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centroid which tracks the predefined trajectory rd(t) ∈ R2.
Furthermore, the formation can further change into vari-
ous shapes by introducing a reference affine transformation
command G∗(t) ∈ R2×2. As for the communications, the
information is measured locally from neighbors and in each
agent’s local frame. To illustrate the concept of specified
order, take a desired formation, pentagon, as an example.
The one with agent’s number order 1-2-3-4-5 is different
from the one with 1-4-2-5-3 or 1-5-4-3-2. The order issue is
crucial when forming into non-symmetric shapes or sticking
groups of MASs into larger synthesized structure.

In the follows, we briefly introduce some Algebraic Graph
Theory for communication graph, and then discuss the dy-
namic models of agents and some related existing results.

A. Algebraic Graph Theory

An undirected graph G = (V,E) consists of a set of nodes
V and a set of unordered edges E. An edge connecting
Vi,Vj ∈ V is denoted as (i, j) ∈ E. The adjacency matrix
A = [aij ] is defined where aij is 1 if (i, j) ∈ E where i 6= j
and 0 otherwise. The degree matrix D = [dii] is a diagonal
matrix with diagonal elements equal to the number of edges
connected to the nodes. The Laplacian matrix L = [lij ] is
defined as D−A. The incidence matrix B = [bik] is defined
where bik is 1 if Vi is the destination of edge-k, -1 if Vi
is the source of edge-k and 0 otherwise. |B| is the entry-
wise absolute value of B. A well-known property is that
L = BBT . Here, we denote 1 as the ones vector and it lies
in the null space of L andBT . IN is N -dimensional identity
matrix. The undirected communication graph is comprised of
nodes which represent agents and edges which represent the
information exchange. Define Nk as the set of nodes with
edge connected to agent-k, i.e., the neighbors of agent-k, and
|Nk| as the total number of neighbors of agent-k.

B. Some Existing Results

The heading control dynamic model, which is frequently
used in the literature, e.g., [9], [10], [13], is shown by

ṙk = v0[cosϕk, sinϕk]T

ϕ̇k = uk, (1)

for k = 1, 2, ..., N, where rk = [xk, yk]T ∈ R2 is the
position, ϕk ∈ R is the heading angle, v0 ∈ R is the velocity,
and uk ∈ R is the heading control input which controls
the moving direction. Here the subindex k refers to agent-k.
Model (1) is controlled by translation velocity v0 and angular
velocity ϕ̇k, and hence is also called the physical model.

In [9], they consider the problem that steering the N
agents with dynamics (1) to form an evenly distributed circle,
and also make the agents rotate around the centroid at a
given angular velocity $0. Moreover, they further require the
centroid to track a predefined center trajectory rd(t) ∈ R2.
To achieve this additional goal, the authors propose the
modified model (with constant v̄0):

ṙk = v̄0 [cos θk, sin θk]
T

+ ṙd

θ̇k = ūk (2)

Fig. 1. The desired formation shape is given in dash line with counter-
clockwise order: 1-2-3-4-5. The square is the centroid. d∗k is the length
of agent-k’s radius vector (arrowed line). θ∗kj is the signed relative angle
between radius vectors of agent-k and j, e.g., θ∗12 < 0 and θ∗53 > 0.

where θk and ūk are the heading angle and the control
input of (2), respectively. Note that the physical model is
(1). Thus, after designing on (2), one needs to find the
relation between the physical and the modified model, that is,
ṙk = v0 [cosϕk, sinϕk]

T
= v̄0 [cos θk, sin θk]

T
+ ṙd. Then,

the physical control law v0 and uk in (1) can be obtained by
the following relations as in [9]:

v0 = |ṙk| =
∣∣∣v̄0 [cos θk, sin θk]

T
+ ṙd

∣∣∣
uk =

r̈TkRπ
2
ṙk

|ṙk|2
(3)

where Rπ
2

is the 90◦−counterclockwise rotation matrix. In
this paper, we propose an extended model to achieve more
functionalities. Once the control law of the extended model
is decided, the physical control law for model (1) can be
obtained by similar derivations as in (3).

III. MODEL EXTENSION AND PROBLEM
FORMULATION

Inspired by (2), we introduce our extended model which
additionally considers arbitrary formation shape and trans-
formation with an affine transformation command. Then, the
considered problem is restated mathematically.

A. Extended Model

In [12], the authors consider ideal circular motion around
origin, ˙̂rk = $0Rπ

2
r̂k, as the virtual structure to derive

the extended model (2), where r̂k is the position of agent-k
in the virtual structure and r∗k is its desired actual position.
Here, we first consider the unit circular motion whose center
follows a given trajectory rd as a virtual structure,

˙̂rk − ṙd = $0Rπ
2

(r̂k − rd). (4)

Then, to derive our extended model based on (4), we
introduce a novel description of the desired formation shape
with rotation-invariant property which is suitable for rotating
formation. Given any desired formation shape, say, Fig. 1.
First, calculate the centroid which the desired formation
shape rotates around. Then, let the vectors from the centroid
to each agent be the radius vectors, and define d∗k as the
length of it and θ∗kj as the desired relative heading phase
(angle) between agent-k’s and agent-j’s, where the term
phase implies sign sensitive, i.e., θ∗kj=−θ∗jk, see Fig. 1.

By the descriptions, for a desired formation with rotation
where agent-k is supposed to rotate around rd with the
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radius d∗k, the actual distance from agent-k to rd should be
scaled by a factor d∗k with respect to the distance from r̂k
to rd in virtual structure (4), i.e., r∗k − rd = d∗k(r̂k − rd).
Moreover, let θ∗k(t) be the desired heading angle of agent-k
which satisfies θ∗k(t) − θ∗j (t) = θ∗kj and θ̇∗k = $0, ∀k, j =
1, . . . , N . Then, the unit vector r̂k − rd can be expressed in
polar coordinates, i.e., r̂k − rd = [sin θ∗k,− cos θ∗k]T . If we
further consider a reference affine transformation command
G∗, which is a 2-by-2 matrix, such as scaling, rotating, or
shearing, then the desired relation between r∗k and r̂k is

r∗k − rd = d∗kG
∗(r̂k − rd) = d∗kG

∗[sin θ∗k,− cos θ∗k]T . (5)

Differentiating (5) we obtain ṙ∗k − ṙd = d∗kĠ
∗
(r̂k − rd) +

d∗kG
∗( ˙̂rk− ṙd). By virtual structure (4), we have ṙ∗k− ṙd =

d∗k($0G
∗ − Ġ∗Rπ

2
)Rπ

2
(r̂k − rd), which is equivalent to

ṙ∗k − ṙd = d∗k($0G
∗ − Ġ∗Rπ

2
) [cos θ∗k, sin θ

∗
k]
T
. (6)

Now, the desired position and desired rotational motion of
agent-k are (5) and (6), respectively. As a result, the extended
model for N numbered agents is proposed based on (6):

ṙk = d∗k($0Gk − ĠkRπ
2

) [cos θk, sin θk]
T

+ vk

v̇k = τ k

G̈k = T k

θ̇k = ūk for k = 1, 2, . . . , N (7)

where θk is the heading angle of agent-k, τ k ∈ R2 is the
translation control that steers vk to follow the given ṙd, T k ∈
R2×2 is the affine transformation command control such that
Gk tracks the reference G∗(t), and ūk ∈ R is the heading
control which is in charge of the moving direction.

Remark 1. Suppose that i) affine transformation is not
considered, i.e., Gk = I2, ii) all agents receive ṙd directly,
i.e., vk can be replaced by ṙd, and iii) consider the circular
formation, i.e., d∗k is the circle radius and v̄0 = $0d

∗
k, then

our extended model (7) degenerates exactly into (2).

Remark 2. In [10] and [12], G∗ and rd are assumed to be
globally accessible in the common global frame and this is
sometimes restrictive. In this paper, Gk and vk is controlled
to track the reference G∗ and ṙd through communication
links instead of assuming globally receivable. Moreover, the
requirement of a common global frame can be relieved.

B. Problem Formulation with the Extended Model

With the extended model proposed in (7), we are able to
re-formulate the ordered formation control problem. Given
the desired smooth center trajectory rd(t) ∈ R2, the desired
formation shape in terms of θ∗kj and d∗k, the smooth reference
affine transformation command G∗(t), and the constant
angular velocity $0. The communications in the MAS
is represented by the undirected connected communication
graph G. Moreover, at least one agent can receive rd and
G∗.In addition, the information should be measured locally
from the neighbors and in the local frame of each agent.

As discussed in Section II, the main objective is to design
the control laws, τ k, T k and ūk, such that the numbered

MAS with extended dynamics model (7) can (i) form into
the arbitrarily given shape with specified order relation, (ii)
rotate around the centroid at the angular velocity $0, (iii)
keep the centroid track the given trajectory rd(t), and (iv)
transform into various formation shapes by the reference
affine transformation command G∗(t). Mathematically, we
want to design the control such that

Gkd
∗
k [sin θk,− cos θk]

T − (rk − rd)→ 0 (8)
θkj → θ∗kj (9)

ūk → $0 (10)
vk → ṙd(= vd) (11)

Gk → G∗, Ġk → Ġ
∗

(12)

where θkj := θk − θj is the relative heading phase between
agent-k and j. Note that (8)-(12) implies that the desired
position (5) and desired rotational motion (6) are achieved.

IV. MAIN RESULTS

In this section, we first introduce the phase penalty flow
exchanging mechanism to facilitate the order issue. Then, the
control law is proposed with stability analysis.

A. Phase Penalty Flow Exchanging Mechanism

Given the connected communication graph as in subsec-
tion III-B. Consider the agent-k which aims to steer θkj →
θ∗kj ,∀j ∈ Nk. Define θ̃kj = θkj−θ∗kj as the relative heading
phase error between agent-k and j, and the phase penalty
of agent-k as ζk =

∑
j∈Nk(1 − cos(θ̃kj)) ≥ 0. Let wk(t)

be the weighting parameter, which is lower bounded by an
arbitrarily chosen positive constant wk, to express the weight
of the agent-k’s phase penalty, and the value of wk will be
designed by an update law later. The reason why not using
constant wk will be remarked after the main theorem. Define
the phase penalty flow of agent k as Φk = (wk−wk)ζk ≥ 0.
The term flow implies the fluidity. More precisely, the agent-
k can arbitrarily distribute its Φk to neighbors and the value
that agent-k distributes to its neighbor agent-j is denoted as
φkj ≥ 0. This can be realized by updating wk, that is, if
wk increases based on the net flow of agent-k, then the Φk
raises as receiving more penalty flow from the neighbors. As
a result, we first derive the net flow change and then propose
the update law of wk based on the net flow of agent-k.

As a design tool, we make agent-k distribute all its phase
penalty flow to the neighbors, that is, Φk =

∑
j∈Nk φkj

. This can be implemented by randomly partitioning the
phase penalty flow Φk into |Nk| parts. Note that φkj and φjk
are not necessarily equal and in fact usually different. In
addition, once ζk = 0, which means that the agent-k is in
a correct order with its neighbors, it should stop receiving
penalty flow from its neighbors and hence can be removed
from the flow exchanging mechanism at the moment. By the
above distribution process, the net flow of agent-k after an
iteration is −Φk +

∑
j∈Nk φjk, which includes flowing out

Φk and receiving the penalty flow from its neighbors. Since
the routed out flows are received by the neighbors, the total
net flow of the MAS equals to 0, i.e.,
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Fig. 2. Suppose the desired formation shape is regular triangle, arbitrarily
select an agent to be at 0 degree, say, agent-1. Then we have agent-2 at
2π
3

and agent-3 at 4π
3

. Stack them into the reference heading vector θr =

[0, 2π
3
, 4π

3
]T . Note that θr2 − θr1 = θ∗21 = 2π

3
and so on.

N∑
k=1

(
− Φk +

∑
j∈Nk

φjk

)
= 0 (13)

Now, consider a fixed formation shape that undergoes the
flow exchanging mechanism. Because the formation shape
remains unchanged, no matter how the agents share or
distribute the penalty flow by updating wk,∀k = 1, . . . , N ,
the total penalty flow should be the same, that is,

∑N
k=1 Φ̇k =

0. By ζ̇k = 0 due to the unchanged formation shape, we have∑N
k=1 Φ̇k =

∑N
k=1 ẇkζk. Thus, we need to design an update

law of wk based on the net flow of agent-k which satisfies∑N
k=1 ẇkζk = 0. This goal is proved together with (13) and

the following designed update law:

ẇk =

{
δ
ζk

{
−Φk +

∑
j∈Nk φjk

}
, if ζk 6= 0

0 , if ζk = 0
(14)

for k = 1, . . . , N . Here δ is a positive constant that can be
arbitrarily chosen. Recall that wk(t) is claimed to be lower
bounded by wk. This can be verified by the fact that once
wk decreases to wk, then Φk = (wk−wk)ζk becomes 0 and
leads to ẇk ≥ 0 by (14).

B. Notations used in theorem and proof

We introduce some variables to present the following
main theorem and its proof. Construct the reference heading
vector, θr ∈ RN , by the following procedure: Given a
desired formation shape, select an agent to be at 0◦, then
the corresponding degrees of the other agents are naturally
determined by the desired relative heading phase. Denote
agent-k’s corresponding degree as θrk and stack all into a
vector θr. One can check that θrk − θrj = θ∗kj , see Fig. 2.

With the knowledge of θr, we define the heading shift
θ̂ := [θ1 − θr1, . . . , θN − θrN ]T = θ − θr ∈ RN with the
property: θ̃kj = θkj − θ∗kj = θk − θj − (θrk − θrj ) = θ̂k − θ̂j .

Define the left-hand side of (8) as the rotational motion
error ekd of agent-k. Then, ekj := ekd − ejd is the relative
rotational motion error which does not need rd. Let vkj =
vk − vj and Gkj = Gk −Gj be the relative errors. Denote
Ed = [eT1d . . . e

T
kd . . . e

T
Nd]

T ∈ R2N as the stacked rotational
error, w = [w1 . . . wk . . . wN ]T ∈ RN as the weighting
vector, and ṽ = [ṽT1 . . . ṽ

T
k . . . ṽ

T
N ]T ∈ R2N as the stacked

translation error where ṽk = vk − vd, for k = 1, 2, ..., N .
For consistence, recall that Nk denotes the set of the

neighbors of agent-k. Here, we define N̄k as the extended
set which additionally considers whether the reference signal
is accessible to agent-k or not. To represent the connection
between agent-k and the reference signal, we define a
diagonal matrix P = [pii] ∈ RN×N where pii is 1 if
agent-i has access to the reference and 0 otherwise. Let

L̄ := (L+ P )⊗ I2 ∈ R2N×2N be the extended augmented
Laplacian matrix where ⊗ denotes Kronecker product. Since
P has at least one positive entry, L̄ is positive definite.

C. Control Law Derivation and Stability Analysis

To derive the control laws, ūk, τ k, and T k, a lemma from
[2] is first given, which will facilitate the design of T k.

Lemma 1. ([2]) Consider agents with second-order dynam-
ics given by ξ̈i = ui, where ui is control input. Be-
sides, exogenous reference signal satisfies the dynamics:
ξ̈r = f(t, ξr, ξ̇r), where f(·, ·, ·) is piecewise continuous
in t and locally Lipschitz in ξr, ξ̇r. The control law
ui = 1

ηi

∑N
j=0 aij

[
uj −K1(ξi − ξj)−K2(ξ̇i − ξ̇j)

]
makes

all agents follow the reference signal ξr. Where Ki > 0, aij
are adjacency matrix elements and ηi =

∑N
j=0 aij where ai0

is 1 if agent-i has access to ξr and 0 otherwise. ξ0 = ξr,
ξ̇0 = ξ̇r and u0 = f(t, ξr, ξ̇r).

Our main results are shown in the following theorem
where we first propose the control law in terms of the global
frame, and then show the equivalence in the local frames.

Theorem 1. Consider the MAS (7) with randomly given
initial positions. Suppose G is connected and at least one
agent can receive rd(t), G∗(t) and their first and second
derivatives. With the update law of wk in (14), if the control
law ūk, τ k, and T k is designed as

ūk = $0 − {αhTk (
∑
j∈N̄k

ekj) + β
∑
j∈Nk

(wk + wj) sin(θ̃kj)}

(15)

τ k =
1

|N̄k|
(
∑
j∈N̄k

v̇j)−
1

|N̄k|
∑
j∈N̄k

(γvkj − αekj) (16)

T k =
1

|N̄k|
(
∑
j∈N̄k

G̈j)−
1

|N̄k|
∑
j∈N̄k

(λĠkj + µGkj) (17)

for k = 1, . . . , N , where hk = d∗kGk [cos θk, sin θk]
T and

α, β, γ, λ, µ, are arbitrarily chosen positive parameters. Then,
the MAS achieves (8)-(12) asymptotically.

Before proving Theorem 1, we will first show that the
control law (15)-(17) can be implemented in agents’ local
frames. Suppose agent-k has a local frame with counter
clockwise rotation angle ψk relative to the common global
frame. Let variables superscripted by k be the variables with
respect to agent-k’s local frame and R(θ) be the rotation
matrix of angle θ. Then, we have the relations for vectors:
ekkj = R(−ψk)ekj , vkkj = R(−ψk)vkj , τ kk = R(−ψk)τ k,
[cos θkk , sin θ

k
k ]T = R(−ψk)[cos θk, sin θk]T , and for matrix:

Gk
k = R(−ψk)GkR(ψk), T kk = R(−ψk)T kR(ψk).

Note that ūkk = ūk as it is a scalar. Recall hk, and define
hkk = d∗kG

k
k[cos θkk , sin θ

k
k ]T which is obtainable in agent-k’s

local frame. Now, we prove that hkk = R(−ψk)hk, by
the following relations: hkk = d∗kG

k
k[cos θkk , sin θ

k
k ]T =

d∗kR(−ψk)R(ψk)Gk
kR(−ψk)[cos θk, sin θk]T =

R(−ψk)hk. Combine with the relation, hTk (
∑
j∈N̄k ekj) =
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(R(−ψk)hk)T (R(−ψk)
∑
j∈N̄k ekj) = hkk

T
(
∑
j∈N̄k e

k
kj),

then we have (15) be equivalent to

ūkk = $0 − {αhkk
T

(
∑
j∈N̄k

ekkj) + β
∑
j∈Nk

(wk + wj) sin(θ̃kj)}

(18)

Multiply R(−ψk) to both sides of (16) and we have

τ kk =
1

|N̄k|
∑
j∈N̄k

(
v̇kj − γvkkj + αekkj

)
(19)

Pre-multiplyR(−ψk) and post-multiplyR(ψk) to both sides
of (17), then we have

T kk =
1

|N̄k|
∑
j∈N̄k

(
G̈
k

j − λĠ
k

kj − µG
k
kj

)
(20)

That is, (15)-(17) is equivalent to (18)-(20) where the control
law is implemented in agents’ local frames. Thus, here we
give Theorem 1 and its proof in terms of the global frame,
while in practice the control law is implemented with (18)-
(20) in each agent’s local frame.

Proof. Choose the Lyapunov Candidate Function

V =
α

2
ET
d L̄Ed+βwT |B|(1−cos(BT θ̂))+

1

2
ṽT L̄ṽ (21)

where the cos(·) is element-wise. The first term indicates the
error between the centroid and rd. The second term penalizes
the relative phase error to achieve ordered formation. And the
last term is for velocity tracking. Thus, we will first show
that V monotonically decreases to 0 and this proves (8-11).
Then, (12) will be proved by using Lemma 1 later on.

The first and the third term of V are in quadratic form and
the second term is constructed with all positive elements. As
a result, V ≥ 0 is ensured. Then, to prove the monotonicity
of V , differentiate ekd to assist the derivation of V̇ : ėkd =
(θ̇k − $0)d∗kGk [cos θk, sin θk]

T − (vk − vd). Recall that
hk = d∗kGk [cos θk, sin θk]

T , and define:

H =

h1 . . . 0
...

. . .
...

0 . . . hN

 ∈ R2N×N

Then, derive V̇ as follows:

V̇ = αET
d L̄Ėd + βwT |B|(sin(BT θ̂) ◦ (BT ˙̂θ))

+ βẇT |B|(1− cos(BT θ̂)) + ṽT L̄ ˙̃v (22)

V̇ = αET
d L̄H(θ̇ −$01) + βẇT |B|(1− cos(BT θ̂))

+ β sin(BT θ̂)TDBT ˙̂θ − αET
d L̄ṽ + (L̄ ˙̃v)T ṽ (23)

V̇ = {αET
d L̄H + β sin(BT θ̂)TDBT }(θ̇ −$01)

+ {L̄ ˙̃v − αL̄Ed}T ṽ + βẇT |B|(1− cos(BT θ̂)) (24)

where D is diagonal matrix with Dii = (|B|Tw)i, and ◦
denotes Hadamard product. Note that from (23) to (24), we
use the fact that 1 is in the null space of BT .

Represent the right-hand side of (24) by V̇1 + V̇2 + V̇3,
which are related to heading control, translation velocity con-
trol, and weighting update law, respectively. In the following,

we will design ūk and τ k to make V̇1 ≤ 0 and V̇2 ≤ 0,
respectively, while V̇3 will be shown equal to 0.

To make V̇1 ≤ 0, the heading control is selected as:

θ̇ = $01− {αHT L̄Ed + βBD sin(BT θ̂)} (25)

Expand it and we have the heading control (15), where the
second term is for ensuring desired rotational motion and the
third term is for desired relative heading phase θ∗kj , ∀j ∈ Nk.

Consider V̇2, if we make the bracket part in it equal to
(−γL̄ṽ)T , then V̇2 = −γṽT L̄ṽ ≤ 0. Therefore, we design

L̄ ˙̃v = αL̄Ed − γL̄ṽ. (26)

It can be rearranged into ((D+P )⊗ I2) ˙̃v = (A⊗ I2) ˙̃v+
(αL̄Ed−γL̄ṽ). D + P is invertible, and by (A⊗B)−1 =
A−1 ⊗B−1, (A⊗B)(C ⊗D) = (A⊗C)(B ⊗D), we get:
˙̃v = ((D + P )−1A⊗I2)ṽ+((D + P )−1⊗I2)(αL̄Ed−
γL̄ṽ). Expand it and move the v̇d term in ˙̃v to the right-
hand side of the equation, then we obtain the translation
velocity control (16), where the first part is for acceleration
consensus, while the second part is for velocity consensus.
Once all ekj converge to 0, the control law becomes the
consensus algorithm with time-varying reference as in [1].

The last part, V̇3 can be expanded and expressed as
β
∑N
k=1 ẇkζk. By (14), we get V̇3 = 0. To sum up, V ≥ 0

and V̇ = −
∑N
k=1{αh

T
k (
∑
j∈N̄k ekj) + β

∑
j∈Nk(wk +

wj) sin(θ̃kj)}2 − γṽT L̄ṽ ≤ 0. As a result, by Lasalle
Invariance Principle, it converges to the largest invariance
set {V̇ = 0}. More precisely,

ṽk = 0 (27)

αhTk (
∑
j∈N̄k

ekj) + β
∑
j∈Nk

(wk + wj) sin(θ̃kj) = 0 (28)

for k = 1, . . . , N . (27) holds implies that vk = vd, and
(28) holds implies that ūk = $0 by (15). Then ėkd =

0 for k = 1, . . . , N and also ˙̃
θkj = 0, ∀k 6= j. That is,∑

j∈N̄k ekj for k = 1, . . . , N , and θ̃kj , ∀k 6= j all converge
to some constants. Particularly, the vector hk keeps moving
and the weighting wk keeps updating; however, (28) main-
tains 0. That is, the only scenario is that

∑
j∈N̄k ekj for k =

1, . . . , N and θ̃kj , ∀k 6= j all converge to the constant, 0.
Moreover, L̄Ed = 0 leads to ekd = 0 for k = 1, . . . , N . As
a result, (8)-(11) are proved.

To achieve (12), a second order consensus control with a
time-varying reference is required. Thus, the result of Lemma
2 can be directly applied to obtain the affine transformation
command control, which is rearranged into (20). �

Remark 3. Suppose without the penalty flow exchanging
mechanism and update law (14), i.e., wk are constants
for all k. Then, by the same process, we can still have
(28) but with constant wk, which only ensures ekd = 0
and

∑
j∈Nk(wk + wj) sin(θ̃kj) = 0, but θ̃kj = 0 is not

guaranteed. For example, suppose sin(θ̃12) + sin(θ̃13) = 0
with θ̃12 and θ̃13 being constants. Then, there exist infinitely
many solutions in addition to the solution θ̃12 = θ̃13 = 0,
which leaves the ordered formation unaccomplished.
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Fig. 3. Desired formation shape Fig. 4. Communication links

V. SIMULATION

In this section, an example of 5 agents MAS is illustrated.
The desired formation shape and the communication links
are given in Fig. 3 and Fig. 4, respectively, where d∗k are
3
√

116
5 , 3

√
26

5 , 18
5 , 3

√
26

5 , 3
√

116
5 , the reference heading vector

θr is [0, π − tan−15− tan−1 5
2 , π − tan

−1 5
2 , π + tan−15−

tan−1 5
2 , 2π−2tan−1 5

2 ]T , and the ‘Info’ in Fig. 4 means the
information of rd = [0.2t− 3− 4 cos(0.03t+ 0.15), 0.3t−
2 + 3 cos(0.06t + 2)]T and G∗ = (1 + 0.5 cos(0.05t))I2

which adjusts the formation shape to pass through the valley
in Fig. 5. The initial positions and headings are randomly
given as [6.6,−7.7]T , [2.2, 2.3]T , [3.6,−6.5]T , [−4.8, 1]T ,
[−4.2,−8.9]T and 2, 1.6, -0.9, -1.9, -2.2, respectively. Then,
by (18)-(20), the results are shown in Fig. 5. The MAS forms
into the desired shape and its centroid tracks the given tra-
jectory roughly at the fourth sampling time instant. Besides,
the formation shape zooms out when passing through a small
slit, and zooms in when the space is commodious. Moreover,
the ordered formation is achieved as specified in Fig. 3.

To clearly demonstrate the ordered formation by our
control law, we provide another simulation that the agents are
initially all at the desired velocity and in desired formation
shape, but with the wrong order 1-3-5-4-2, see Fig. 6. By
our control law, the desired ordered formation 1-2-3-4-5 is
achieved instead of sticking to the wrong order 1-3-5-4-2.

VI. CONCLUSION

In this paper, rotational formation with arbitrary shape
and specified order is considered. The control law (18)-(20)
measured locally from the neighbors and in each agent’s local
frame steers the MAS to achieve ordered formation, rotate
around the centroid which tracks a desired trajectory, and
transform the formation into various shapes to adapt to the
environment by reference affine transformation command.
We propose an extended model which additionally considers
arbitrary formation shape and affine transformation com-
pared with (2). Besides, the phase penalty flow exchanging
mechanism is introduced to facilitate the success of ordered
formation without imposing restrictions on initial condition
as in [7], [13], or assuming specific communication graphs
as in [16]. Unlike the existing results where rd and G∗

Fig. 5. Ordered formation which adapts to the environment

Fig. 6. Ordered formation is achieved by our design from the order relation
1-3-5-4-2 (dash line) to 1-2-3-4-5 (solid line).

are globally accessible, our design does not require global
information in advance and preserves the ability of on-
site changing. In the future work, a sphere model can be
considered to extend the results to the spatial workspace.
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